

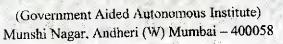
(Government Aided Autonomous, Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester-Examination - June 2024

Program: S.Y.B.Tech (Electrical)

Course Code: BS-BTE401

Maximum Points: 100 Semester: IV


Course Name: Transforms, Statistics and Probability

Note:

- 1. Attempt Any Five Questions
- 2. Answers to the sub questions should be grouped together

-		(Questions			Points	CO	BL	Mo dul
1	a	Out of 800 families with 4 chil expected to have (i) 2 boys and two boys? Assume equal proba	12 girls (11) at leas	st one giri (iii)	vould be at most	6	C03	BL5	4
	b	The equations of the lines $6x + y = 31$ Find $\overline{x}, \overline{y}$ and	of regression a r. Also, find the	$\frac{1}{2} x + 2y = \frac{1}{2} x + 2y = \frac{1}$	20	6	CO3	BLS	3
	c	variance of x is 25. Prove the $e^{-x} \cos x = \frac{2}{\pi} \int_{0}^{\infty} \frac{\lambda}{2\pi}$	$\frac{\lambda^2 + 2\cos\lambda x}{\lambda^4 + 4} d\lambda$			8	CO2	BL3	2
2	a	The mean height and the	S.D of the heig	ht of eight r	andomly	6	C04	BLS	7
		chosen soldiers are 1/56.9 corresponding values of six and 8.50 cm respectively. B	cm and 8.29 randomly chose based on this data rter than sailors?	cm respective n sailors are 1 , can we conc	70.3 cm lude that		C02	BL2	
	b	Express the function $f(x)$ Hence Evaluate $\int_{0}^{\infty} \frac{s \ln \lambda \cdot \cos \lambda}{\lambda}$	$= \begin{cases} 1, & x < 1 \\ 0, & x > 1 \end{cases} $ as	a Fourier Inte	gral.	6			
				marks of 60 st	udents	8	C03	BL3	- +-
	C	Of ven the tonowing micht	Mathematics	Physics]				
		Mean	80	50					
1		Standard Deviation	15	10					1

End Semester-Examination - June 2024

		Correlation coefficient = 0.4				
		Estimate				
		(i) The marks of a student in mathematics who scored 60 in physics				
		(ii) The marks of a student in physics who scored 70 in mathematics.				
Ì				C03	BL4	4
	a	An automatic machine makes paper clip from coils of wire. On an average 1 in 400 clips is defective. If the paperclips are packed in boxes of 100, what is the probability that any given box of clips will contain (i) no defective (ii) one or more defective (iii) less than two defective clips?	6			
+	b	A potential buyer of light builts bought 50 bulbs each of 2 brands.	6	CO4	BL5	5
		Upon testing the bulbs, he found that brand A had a mean life of				
		1282 hours with S.D of 80 hours, brand B had a mean life of 1208				
		hours with S.D of 94 hours. Can the buyer be quite certain that the				
		mean of the two brands differ?			BL5	3
	c	In the usual notation, prove the Spearman's formula for Rank correlation	8	C03	BLS	
		$R = 1 - \frac{6}{n(n^2 - 1)} \sum_{i=1}^{n} d_i^2, \text{ where } d_i = x_i - y_i$	 _			
	1			C01	BL5	+
4	a	Obtain Complex Form of Fourier series for the function	6			
		$f(x) = \cosh ax, x \in (-L, L)$			 	
	b	An aptitude test for selecting officers in a bank is conducted on 1000 candidates. The average score is 42 and standard deviation of score is 24. Assuming normal distribution for the scores, find (i) The numbers of candidates whose scores exceed 60. (ii) The numbers of candidates whose score lie between 30 and 60.	6	CO3	BL3	4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester-Examination - June 2024

	с	Find constant k such that the function	8	CO3	BL3	3
		$k(1-x^2), \text{ if } 0 \le x \le 1$				
		$f(x) = \begin{cases} k(1-x^2), & \text{if } 0 \le x \le 1\\ 0 & \text{elsewhere} \end{cases}$				
		is a density function. Also find $P(0.1 \le X \le 0.2)$ and				
		$P(X \ge 0.5)$				
_						
5	a	Certain pesticide is packed into bags by a machine. A	6	CO4	BL4,5	7
		randora sample of 10 bags is drawn and their contents are				
		found to weigh (in kg) as follows		ł		
		50, 49, 52, 44, 45, 48, 46, 45, 49, 45	}			
		Test if average packing, can be taken to be 50 kg at 5%				
		LOS.				
	b	Find Fourier Transform of $f(x) = \begin{cases} x^2, & x \le a \\ 0, & x > a \end{cases}$	6	CO2	BL4	2
	С	Calculate the correlation coefficient between x and y from the	8	CO3	BL2,	3
		following data $n = 10$, $\sum x = 140$, $\sum y = 150$, $\sum (x - 10)^2 = 180$,	Ŭ		BLA	
		$\sum (y-15)^2 = 215, \ \sum (x-10)(y-15) = 60.$;		
6	a	If θ is the acute angle between the two regression lines, then prove that	6	CO3	BL5	3
		$\tan \theta = \frac{1-r^2}{r} \cdot \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$, where r, σ_x, σ_y have their usual				
		meanings.				
	b	A machine is set to produce metal plates of thickness 1.5 cms with	6	CO4	BL3	6
		standard deviation 0.2 cm. A sample of 100 plates produced by				
		the machine gave an average thickness of 1.2 cms. Is the machine fulfilling the purpose?				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester-Examination - June 2024

	С	Evaluate				1		8	CO2	BL3, BL5	2
			$\left\{\frac{z^2+z}{z-1\right\}^3}\right\}$ by long								
		$(ii)Z^{-1}\left\{\frac{1}{(i)}\right\}$	$\frac{3z^2 - 18z + 2}{(z-2)(z-3)(z-3)(z-3)(z-3)(z-3)(z-3)(z-3)(z-3$	$\left(\frac{6}{-4}\right)$ by	y partial fr	action metho	d				
			1		C-11	4.4.			CO4	BL2.	6
7	a	Two rand	iom sample g	ave the			5	6		BL3	
			Sample No	Size	Mean	Variance					
			1	1500	67.42	2.58	•				
		1	2	2000	67.25	2.5					
			L	,l	2	· · · · · · · · · · · · · · · · · · ·	J Jacob 2				
	1	Is the du	fference 'oetwe	en stan	aara aev	lation signi	icant?				
	b	1	ansform of					6	CO2	BLS	2
		(i) f(k)	$=\begin{cases}a^k,k\geq 0\\b^k,k<0\end{cases}$	(ii) f($(k) = \sin^3 ($	$\left(\frac{k\pi}{6}\right), \ k \ge 0$					
	c	Find Fou	rier Series of f	(x) = xs	in <i>x</i> , 0<	$x < 2\pi$	· · · · · · · · · · · · · · · · · · ·	8	CO1	BLt, BL3	1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End semester June 2024

1116/24

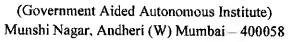
Program: SY-Electrical Level D

Duration:3 hours Maximum Points:100

Course Code: PC-BTE401

Semester:IV

Course Name: Power Generation, Transmission and Distribution


Answer any 5 questions:

Q. No	Questions	Ma rks	B L	C O	Mo dul e
la	Two impedences $Z_1=0.8$ +j5.6 Ω and $Z_2=8$ -j16 Ω and a single phase motor are connected in parallel across a 200V rms, 60 Hz supply as shown in fig. The motor draws 5 KVA at 0.8 power factor lagging. i))Determine total power taken from the supply, supply current and overall power factor. ii)Find the capacitance of the capacitor connected across the loads to improve the overall power factor to unity. $\frac{T}{13} = \frac{T_1}{0.8} = \frac{T_2}{13} = \frac{T_3}{0.8} = 5 \text{ KVA}$ 0.8 pf lag	10	3	2	1
b`)	Write short notes on, i)Base load and peak load plants. ii)Methods to improve string efficiency.	6	2	1	2 55
c)	Explain the Impact of renewable energy sources on power systems	4	2	1	2
2a)	Using the nominal π method find the sending end voltage and current of a 150km, three phase 50Hz transmission line delivering 50 MW at 110KV at 0.8 lagging power factor to a balanced load.Resistance, inductive reactance and capacitive shunt admittance of the line are 0.1 Ω , 0.5 Ω and 3x10 ⁻⁶ S per km per phase.	12	3	2	4
b)	Explain skin and proximity effect.	4	2	1	3
c)	Discuss the phenomena of corona and methods to reduce corona loss.	4	2	1	3

Bhara1192 Vidya Bhavaa 🤟

SARDAR PATEL COLLEGE OF ENGINEERING

End semester June 2024

3a)	line consists of two bundled conductors as shown.radius of each conductor is 0.4cm and distance is d=0.4m.calculate the inductance per phase and capacitance per phase.	12	3	2	3
	$\begin{array}{c} a \\ \bigcirc d \\ \bigcirc \end{array} \\ \hline d \\ \hline$				
b)	Write short notes on i) pump storage ii) Batteries	8	2	1	2
4a)	A three phase 60Hz ,500KV transmission line is 300km long .The line inductance is 0.97mH/km/phase and capacitance is 0.0115μ F/km/phase.Assume a lossless line find its surge impedence, line phase constant β , velocity of wave propagation, line wavelength and surge impedance loading.	10	3	2	4
b)	Derive expressions for sending end voltage and current for medium transmission lines using nominal T method with neat phasor diagrams and derive the A,B,C,D parameters for the same.	10	3	2	4
5a.	Prove that if a a 2 winding transformer is used as an autotransformer its power rating is increased (with circuit diagrams.)	6	3	2	5
b.	Explain step and touch potential.	4	2	3	6
C.	A two winding transformer rated at 9KVA,120/90V,60 Hz has a core loss of 200 ^V W and a full load copper loss of 500W. a).The above transformer is to be connected as an autotransformer to supply a load at 120V fom a 210V source. What KVA load can be supplied with out exceeding the current ratings of the windings(for this part assume an ideal transformer) b)find the efficiency with the KVA loading of part a) and 0.8 power factor.	10	3	2	5

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End semester June 2024

ба.	A 132 KV ,3 phase ,50Hz transmission line 200 km long consists of three conductors of effective diameter 20mm arranged in a vertical plane with 5m spacing and regularly transposed .Find the inductance and KVA rating of the arc suppression coil in the system.	8	3	3	6
b)	Write short notes on Three winding transformers.	4	2	2	5
c)	Explain resonant grounding with neat circuit and phasor diagram.Derive the expression for L for resonant grounding.	8	2 , 3	3	6
7a)	Draw and explain the connection schemes for distribution system	8	2	4	7
b)	Derive a simple expression for the voltage rise of an unloaded transmission line.	4	, 3	2	4
c)	Write short notes on the busbar arrangements and equipments in a substation.	6		4	\7

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058.

End Semester Examination June-2024

12/6/24

Max. Marks: 100 Class: S.Y. B.TECH. Semester: <u>IV</u> Name of the Course: Power Electronics Duration: 03 Hours Program: B.TECH. (ELECTRICAL) Course Code: PC-BTE402

Instructio ns:

- Question No.1 is compulsory
- S olve any four from remaining questions
- F igures to the right indicates full mark
- Assume suitable data if required and justify the same.

Ques, No,	Description o'i question	Max. Marks	CO
Q.1.	Solve Any Four.	20	
a.	What is the need of snubber circuit for SCR.	05	01
b.	Explain the working principle of MOSFET.	05	01
с.	What are the salient features of voltage source inverter and current source inverter?	05	03
d.	The voltage source inverter (VSI) supplies pure inductive load, then the battery is replaced by capacitor. Justify the statement.	05	03
e.	The single phase half wave uncontrolled rectifier supplies pure inductive load. From the waveform of voltage and current, prove that the average power drawn from the source is zero.	05	03
Q.2a.	Derive the expression for average dc output voltage for three phase full wave fully controlled rectifier. Plot the variation of average dc voltage output of rectifier as a function of firing angle.	08	
Q.2ŀ,.	A three phase full-wave fully controlled rectifier supplies highly inductive load (load current is continuous and constant). Draw the waveform of instantaneous output voltage for firing angle alpha is 30 degrees. Not e: Use graph paper to draw the waveforms.	12	03

	What are the advantages of half controlled rectifiers?	10	02
	A single phase F.W. Half controlled rectifier supplies large inductive load, so		
	that load current is continuous and constant.		
). 3a.	Explain the circuit operation and draw the following waveforms for:		
	(i) Source Voltage, v_s		
	 (ii) Load Voltage, v₀ (iii) Load current, i₀ 		
	(iii) Load current, i ₀ (iv) Source current, i _s		
).3b.	A single phase full wave uncontrolled rectifier connected to 230 V, 50 Hz supply feeds a load having constant current of 50A.	10	03
	Calculate:		
	(i) Average value of dc voltage.		
	(ii) RMS value of source current.		
	(iii) RMS value of load current.		
	A single phase full wave fully controlled rectifier supplies continuous and		1
.4a.	constant load current. Draw the waveform of load current and source current.	10	03
	Derive the expression for rms value of load current.		
2.4b.	Discuss the sine-triangle PWM technique used to control the three phase	10	02
····.	inverter. What are the issues when modulation index approaches to one.	-	100
).5a.	Draw the circuit of Buck Converter. Explain the different modes of operation	10	03
	with all relevant waveforms.		
	For Buck Converter derive the expressions for:	10	03
	(i) Duty ratio		
.5 b.	(ii) Ripple current		
	(iii) Ripple voltage		
	(iv) Value of inductor and capacitor for continuous current.	04.00	0.0
	What are the important features of boost regulator?	04+06	03
	A boost regulator has an input voltage of $Vs = 5V$. The average output voltage $Va = 15V$ and the average load current $Ia = 0.5$ A. The switching frequency is		
	25 kHz. If $L=1.50 \mu$ H and $C = 220 \mu$ H.	1	
Q.6a .	Determine:		
	1) Duty cycle, K		
	2) The ripple current of inductor, ΔI		
	3) The peak current of inductor, I_2		
	A single phase inverter controlled with pulse width modulation technique	10	02 -
	(PWM) is used to feed the load of 230V, 50 Hz.		
_	For modulation index M=1, Calculate the value of DC voltage.		
Q.6b.	If the same inverter is controlled by square wave technique, what will be the		
	value of DC voltage.	<u> </u>	+
	A three, phase inverter is operating in square wave mode and feeding the RL	14	02
	load connected in delta. Draw the following waveforms:		
Q.7a.	(i) Pole voltages		
-	(ii) Line voltages,		
	(iii) Phase currents (iv) Line currents		
	Draw the circuit diagram and explain AC voltage regulator. Enlist the suitable	06	02
Q.7b .	applications.		

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

1816

DSEM EXAMINATION JUNE 2024 S.Y.

Program: Electrical Engg.

Course Code: PC-BTE 403

Duration: 3 hour Maximum Points: 100 Semester: IV

18162

Course Name: Electrical Machines-1

- Question no. 1 is compulsory
- Solve 4 questions from remaining 6 questions

Q.No.	Questions	marks	со	BL	Mod ule No.
	Why sinusoidal excitation is preferred in electrical systems?	4	1	3	1,2
В.	Draw star delta connection with polarity marked, on three phase transformer.	.4	3	2	6
С	Explain the meaning and significance of the critical field resistance of a shunt generator	4	2	3	4
D	Discuss the vector group, marking on three phase transformer with suitable example.	8	3	2	7
2.A	What is armature reaction in DC machine? How to overcome the effects of armature reaction?	10	2	2	4
B	Discuss the commutation in DC machine. And state the methods used for good commutation process.	10	2	2	4
• A	A 50 kVA, 2200/110 V transformer when tested gave the following results	15	3	3	6
	 OC test, measurements on the LV side: 400 W, 10 A, 110 V, SC test, measurements on the HV side: 808 W, 20.5 A, 90 V Compute all the parameters of the equivalent circuit referred to the HV and LV sides of the transformer. 				

1 Page

				*
Justify that under SC test, the core loss is negligible	5	3	3	6
neid resistance of 200 ohm. Determine back emf when giving on	8	2	3	5
A 2:5-kW 125-V separately-excited dc machine is operated at a	12	2	3	5
Derive mechanical for the developed in electromagnetic system, thown below, considering first as slow moving of moving part and then as fast moving of moving part.	20	1	3	3
R R R R R C R C R C C C C C C C C C C C C C				
Discuss the conditions required to be followed for parallel operation of three phase transformers	10	3	2	6
The 2400:240 V, 50-kVA transformer is connected as an autotransformer, as shown in Fig. below, in which ab is the 240-V winding and bc is the 2400-V winding. (It is assumed that the 240-	10	3	3	7
	A 440 V DC shunt motor has armature resistance of 0.8 Ohm and field resistance of 200 ohm. Determine back emf when giving an output of 7.46 kW at 85 % efficiency. A 2:5-kW 125-V separately-excited dc machine is operated at a constant speed of 3000 r/min with a constant field current such that the open-circuit armature voltage is 125 V. The armature resistance is 0.02 ohm. Compute the armature current, terminal power, electromagnetic power and torque when the terminal voltage is (a) 128 V and (b) 124 V Derive mechanical forze developed in electromagnetic system, shown below, considering first as slow moving of moving part and then as fast moving of moving part.	A 440 V DC shunt motor has armature resistance of 0.8 Ohm and field resistance of 200 ohm. Determine back emf when giving an output of 7.46 kW at 85 % efficiency. A 2:5-kW 125-V separately-excited dc machine is operated at a constant speed of 3000 r/min with a constant field current such that the open-circuit armature voltage is 125 V. The armature resistance is 0.02 ohm. Compute the armature current, terminal power, electromagnetic power and torque when the terminal voltage is (a) 128 V and (b) 124 V Derive mechanical for:se developed in electromagnetic system, 20 shown below, considering first as slow moving of moving part and then as fast moving of imoving part.	A 440 V DC shunt motor has armature resistance of 0.8 Ohm and 8 2 field vesistance of 200 ohm. Determine back emf when giving an output of 7.46 kW at 85 % efficiency. 8 2 A 725-kW 125-V separately-excited dc machine is operated at a constant speed of 3000 r/min with a constant field current such that the open-circuit armature voltage is 125 V. The armature resistance is 0.02 ohm. Compute the armature current, terminal power, electromagnetic power and torque when the terminal voltage is (a) 128 V and (b) 124 V 20 1 Derive mechanical for:e developed in electromagnetic system, shown below, considering first as slow moving of moving part and then as fast moving of moving part. 20 1 Immovable Immovable Immovable Immovable 10 3 Discuss the conditions required to be followed for parallel 10 3 The 2400:240 V, 50-kVA transformer is connected as an 10 3	A 440 V DC shunt motor has armature resistance of 0.8 Ohm and field resistance of 200 ohm. Determine back emf when giving an output of 7.46 kW at 85 % efficiency. 8 2 3 A 25-kW 125-V separately-excited dc machine is operated at a constant speed of 3000 r/min with a constant field current such that the open-circuit armature voltage is 125 V. The armature resistance is 0.02 ohm. Compute the armature current, terminal power, electromagnetic power and torque when the terminal voltage is (a) 128 V and (b) 124 V 1 3 Derive mechanical for:// developed in electromagnetic system, shown below, considering first as slow moving of moving part and then as fast moving of moving part. 20 1 3 Immovable Immovable Immovable Immovable Immovable 2 1 3 Discuss the conditions required to be followed for parallel 10 3 2 2 3 The 2400:240 V, 50-kVA transformer is connected as an 10 3 2 3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

ENDSEM EXAMINATION JUNE 2024

Write short note on following A. Excitation phenomenon o'' star-star connec	ted transformer irrent transient	20	3	2

3 | Pag ↔

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

S.Y. S. Tech Sem June 2024

Program: Electrical Engineering Course code: PC-BTE404 Name of the Course: Microprocessor and Microcontroller Duration: 3 Hours Max. Marks: 100 Sem. IV 2016/201

- Solve any five questions out of seven.
- Answers to all sub questions should be grouped together.
- Make suitable assumptions whenever necessary. State them clearly.
- Diagrams drawn to support your answer should be clearly visible.

2.		Pts.	CO	BL	Module
•	State whether following statements are True/False. Justify the same.	10	1	5	1
	A microprocessor is called a computer on a chip.				
	8051 is a 40-pin IC. Out of them 24 pins are used for the four I/O ports.				
	A contains 48H. Determine value of A after execution of the following.				
2	Explain				
	XRL A, #34H	3	2	3	4
·	CPL A			<u> </u>	
i	MOV P1,A	3	2	3	3
•	SETB P1.4				1
	MOV A,P1				
i	MOV 57H , #55H	4	2	3	4
	MOV R1, #57H				
	ADD A, @R1				<u> </u>
		10		2	7
2	Explain with suitable diagram, interfacing of 4x4 matrix keyboard with 8051.	10	3	4	1
A	Explain the method to detect key press.				
B	Draw the interfacing diagram with LCD and 8051, in which Port 0 is used to	6	3	3	7
Ē	connect data bus of 8051. P 1.0, P 1.1 and P1.2 are to be connected to RS,				
	R/\overline{W} , E respectively. Hence explain the following code.				
	MOV P0, A				
	SETB P1.0	1			
	CLR P1.1				
	SETB P1.2				
	ACALL DELAY			1	
	CLR P1.2				
	RET Write a program to move the content of 7 th bit of the A register to pin P0.7,	4	1	3	3
ii	and also save it in RAM location 08H. Explain the code written				
	מוע מוסט למעל זו זון וגרווען וטלמנוטון טטון. בארומון נווט טטעט וויונטו	1			
3	With the help of neat diagram explain RAM allocation in 8051. Hence explain	10	1	2	2
-	Register banks, stack, bit addressable RAM, scratch pad RAM.				
A		10	1	3	2
B	Describe the internal architecture of 8051 microcontroller with neat diagram.		1.		

4 A	Explain registers TMOD, SCON, SBUF. A program to receive data at a baud rate of 4800 is to be written using timer 1 in mode 2. Explain initialization required i.e. values to be stored in TMOD, SCON, TH1	10	2	3	6
B	Explain IP register with the help of neat diagram. Explain default priorities of the interrupts. Assume that after reset, the interrupt priority is set by the instruction "MOV IP, 00001100B" Discuss the sequence in which the interrupts are serviced.	10	3	2	5
5 A	Write a program that continuously gets 8-bit data from P0 and sends it to P1 while simultaneously creating a square wave having period of 100 μ S. (on pin P1.1). Use Timer 0 in mode 2 to create the square wave. Assume that XTAL =11.0592 MHz. Explain the use of interrupt in detail.	10	2	3	5
B	List any 5 applications where μC is used. Explain the roll of μC (min 5 points) in any one of the applications	10	1	1	
6 A	Assuming that clock pulses are fed in to pin T1 (P3.5), write a program for counter 1 in mode 2 to count pulses and display the state of the TL1 count on P2 where LEDs are connected.	10	2	3	5
B	Explain what is represented by the following part of the code. Specify its significance with the help of suitable diagrams.	10	1	3	5
i	MOV A, PCON SETB ACC.7 MOV PCON, A				
ij	ORG 000BH CPL P2.1 RETI				
7 A i	Determine the address assigned to the memory chip referring following dia. Explain the modification is required to be done to assign the addresses from 3000H to 3FFFH to this memory chip.	4	3	3	5
	A12 A13 A14 A15 Do A0 A0 A0 A11 A14 A11 A15 A14 A15 A14 A15 A14 A15 A14 A15 A14 A15 A15 A17 A17 A17 A17 A17 A17 A17 A17 A17 A17				
ij	Write a program to transfer 'Y' serially at 9600 baud rate continuously and also to send 'N' to port 0 which is connected to display device.	6	2	3	6
B i	and perform the following: (a) If SW=0, send letter 'N' to P2.	5	2	3	2
ji		5	2	3	2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination June 2024

Program: SYBTech (Electrical) Scur iv

Course Code: PC-BTE405

MlbM Duration: 3 Hr Maximum Points: 100 Semester: IV

Course Name: Signals and Systems

Note:

- 1) Question No. 1 is compulsory. Solve any four from remaining questions.
- 2) In the absence of any data, make suitable assumptions and justify the same.

Q. No.	Questions	Poi nts	C O	BL	Mo d. No.
1 a)	Determine Fourier Transform of signal and plot magnitude & phase spectrum of $x(t) = 10 e^{-2t}u(t)$	05	03	02	03
1 b)	Consider a DT system $y[n] = 0.3 y[n-1] + x[n]$ with $y[-1] = 2$. If input applied to the system is $x[n] = (1/2)^n u[n]$, determine output of the system.	05	02	02	02 06
1 c)	Determine inverse Z-Transform of $X(z) = \frac{5z}{z-4}$ using long division method if ROC is $ z < 4$.	05	02 04	02	05
	OR				
	Realize a CT system having transfer function $H(s) = \frac{5s}{6s^2-s-1}$ (any one form)			03	07
1 d)	Calculate Laplace Transform and plot ROC of signal $x(t) = 5e^{-2t}u(t) - 4e^{2t}u(t) + 3e^{-7t}u(-t)$	05	04	03	04
2 a)	Classify the system described by following inputoutput relation as static/dynamic, stable / unstable and linear /non-linear, causal/ non-causal. $y(t) = x^2(t) + 2x(t+1)$	08	01	03	01
2 b)	Realize following system in Direct I and Direct II form $H(z) = \frac{(1+z^{-1})(1+2z^{-1})}{(1+\frac{1}{2}z^{-1})(1-\frac{1}{4}z^{-1})(1+\frac{1}{8}z^{-1})}$	12	02	03	07

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aid ed Autonomous Institute) Munshi Nagar, And 1eri (W) Mumbai – 400058

End Semester Examination June 2024

3 a)	a) Determine x(t) if $F(s) = \frac{9}{(s+2)(s-2)}$ when ROC is	10	04	02	04
	($(s+2)(s-2)$ i) Re{s} < 2 and Re{s} > -2 ii) Re{s} >2 and Re{s} < -2				
	$iii) \operatorname{Re}\{s\} < -2$ iv) $\operatorname{Re}\{s\} > 2$				
2 h)			_		
3 b)	Consider a series RL network with $R=2$ ohm and $L=1H$, excited by a voltage source of Vi(t) = t e^{-2t} u(t). Output is measured across resistance. Determine transfer function of the system and the output of the system. Comment on the stability of the system.	10	04	03	04
4 a)	Determine trigonometric OR complex exponential form of Fourier series of half wave rectifier output signal. Assume the input to the rectifier as Vs= 100 Sin(wt) with $f = 50$ Hz.	10	03	02 03	03
4 b)	Prove following properties of CT Fourier Transform	10	03	02	03
	i) Time scaling ii) Convolution				
5 a)	Determine Z- Transform and ROC of following signals	10	04	02	05
	a) $x[n] = 2^n - 2n + 3$ for $n \ge 0$				
	b) $x[n] = -\left(\frac{1}{2}\right)^n u[n] + \left(\frac{1}{3}\right)^n u[-n-1]$				
5 b)	Determine if following signals are energy signal, power signal or neither (06)	10	01	02	01
	i) $x(t) = e^{-at}u(t)$ $a > 0$ ii) $x[n] = (-0.5)^n u[n]$				
	Plot even and odd part of following functions (04)				
	i) $x[n]=u[n]$ ii) $x(t) = u(t)$				
6 a)	State and prove initial and final value theorem of Z- Transform.	10	04	03	05
	Hence find initial and final value of $x[n]$ if $X(z) = \frac{z^2-5}{(z-1)(z-2)^2}$.				06
6 b)	The output $y[n]$ of a DT system is found to be $2(1/3)^n u[n]$ when input applied is unit step signal $u[n]$.	10	04	03	06
	a) Determine impulse response of the system				
	b) Draw Pole-zero plot of the system				

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Examination June 2024

Γ	[c) Comment on the stability of the system				
		d) Find output when input is $x[n] = (1/2)^n u[n]$.				
	7 a)	Determine output of the system if $x[n] = \alpha^n u[n]$ and $h[n] = \beta^n u[n]$ where $ \alpha < 1$ and $ \beta < 1$ (use graphical method) Comment on the stability of the system.	10	02	02 03	02
	7 b)	Plot the signals $x[n]$ and $h[n]$. Determine the output of the system if	10	01	02	02
D		$x[n] = \begin{cases} 1 & n = -2, 0, 1 \\ 2 & n = -1 \\ 0 & otherwise \\ h[n] = \delta[n] - \delta[n-1] - \delta[n-4] \end{cases}$				

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER EXAMINATION JUNE 2024 Program: SY B. TEC. (C/E) Jerry IV 216/24

Duration: 3 Hours

Course Code: IK-BTM201

Maximum Points: 100

Course Name: Indian Traditional Knowledge.

Semester: IV

Note: Attempt Any Five Questions

	Q.No.	Questions	Points	CO	BL	Module No.
9	1A	Complete the Statements by Selecting Proper Options.	10	2	4	1
	1	The Constitution of India adopted in 1950 which enshrines the principles of democracy, secularism and a) Anarchism b) Federalism c) Communism d) Unitary State				
	2	Indian Mathematicians such as Aryabhata, Bhaskara and made Pioneering advancements.				
	3	 a) Chandragupt b) Samudragupt c) Brahmagupt d) Shivgupta interpretation of words, Phrases and sentences. a) Phonology b) Syntax c) Semantics d) Morphology 				
•	4	Beals with procedures of rituals, ceremonies and sacrifices. a) Yajur veda b) Rig Veda c) Sam veda d) Atharva veda	_	_		
	5	The iron pillar of Delhi, dating back to the period stands as a testament to the forging corrosion-resistant iron a) Mauryan b) Rashtrakuta c) Gupta d) Kanishka				
	6	is the traditional Indian science of warfare and martial arts. a) Gandharva veda b) Dhanur veda c) Sthapatya Veda d) Ayur veda				
	7	Sahita Provided Comprehensive knowledge about anatomy, diseases and treatments. a) Sushruta b) Bhaskara c) Nagaurjuna d) Yaska				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai = 400058

END SEMESTER EXAMINATION JUNE 2024

8	The outlook involves to adopt a rational and evidence- based approach.				
	a) Scientific b) Spiritual c) Metaphysical d) Theological				
9	is a traditional practice in yoga consisting breath control. a) Acupuncture b) Chiropractic c) Pranayama d) Niyama	1	1		
10	focuses on the meters and poetic structure of the vedas. a) Nirukta b) Shiksha c) Kalpa d) Chandas		-		
1B	Answer the Following	-	_		
A	What are the benefits of Yoga Asanas?	10	3	2	4
В	Define the empirical approach to science.		-		
С	Name the ancient Indian cities known for urban planning.	-	-		
D	What are the Three doshas emphasized by Ayurveda?	-			
E	Define Phonology in linguistics.		-		
2A	Write about Yoga and Pranayama			1	
В	Narrate the types of Vedangas	10	3	2	5
3A		10	2	1	2
в	Write a note on Scientific Outlook and Haman Values.	10	4	1	3
	Explain the ancient Indian engineering knowledge	10	3	2	4
4A	Explain the Relevance of Science and Spirituality.	10	1	2,	-
В	Give an account on Sankya Philosophy	10			2
5A	Analyze the major branches of linguism.		4	3	7
В	Discuss the Fundamental Unity of India	10	2	3	7
6A	Give an account of Four Vedas	10	4	2	1
B	Describe the heroic value of the state	10	2	4	4
	Describe the heroic role of India in World Civilization	10	3	3	-
7	Illustrate the Philosophy of the Following. (Any Two) a) Gautam Buddha b) Kabir c) Kanad d) Mahaveer	20	4	2	1 6